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PART 2

III.  Application of Newtonian Physics to Distributed Compressible Fluid Flow in Horizontal

Wells

If one takes Bernoulli’s Equation and applies it to a horizontally placed well in which air is being

sparged into uniform soil, the graphical model for a short segment of well screen could be illustrated by the

following:

In this model and ensuing equations, several simplifications and assumptions have been made.

Though the graphically represented simplifications remain valid in the “real world”, the simplifications and

simplifying assumptions made in the ensuing equations do not “carry over” with great accuracy in an actual

installation.  However, these mathematical assumptions and simplifications greatly reduce the complexity

of the equations involved, and without such action the equations and ensuing discussion about them would

take many pages of text and would be extremely involved.  Suffice it to say that the aforementioned model

and simplified equations can be used for illustrative purposes.
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In this model, the control volume across the first slot in the well is shown.  To simplify the model,

it will be assumed that there are no slots in this or any other successive plane going into or out of the paper

(e.g., the effect of the Z-axis is ignored).  Further, a convention will be defined where positive Y values

will progress up and positive X values will be from right to left.

First let’s assume that some known static pressure P0 is applied to the well which results in some

unknown total mass of air M0, at some unknown mass density ρρρρ0 and some unknown velocity V0 entering

the well from the right.  Slot #1 possesses some finite open area to the well’s interior surface, and by

applying yet-developed equations to account for the assumed uniform flow resistance of the soil and static

pressure of ground water, some incremental mass m1 exits this slot.  Upon exiting, mass m1 (which

arguably possesses some static pressure p1 equal to that of static groundwater and occupies some finite

volume) expands as it rises and disperses through to the surface of the water table.  Since some finite mass

“escapes” from the slot, the total remaining mass in the well downstream of this slot is reduced by mass

m1.  Mass M 1 represents the remaining mass within the well.  Further, as the “slug” of air progresses across

the slot (and mass m1 escapes from the slot) friction between the air and the walls of the well occurs.  This

friction results in a net loss of energy to the surroundings, which manifests itself (ultimately) in heat loss

from the air through the well screen wall to the soil.

Because some mass leaves the control volume (through the slot), the in-well mass remaining after

the slot must be less than that before the slot (e.g., ΣΣΣΣM1 < ΣΣΣΣM 0).  Further, since this exiting mass possesses

some energy and friction results in additional energy loss to the surroundings, the resulting total energy

level of the remaining mass M 1 must be less than M0.  Using similar nomenclature, ΣΣΣΣE1 < ΣΣΣΣE0.  Since this

energy manifests itself in both kinetic and potential energy forms, the net reduction in total energy results

in static pressure P1 and velocity V1 being lower than P0 and V0 respectively.

For illustrative purposes, if it is assumed that Bernoulli’s Equation for incompressible flow

(derived in the previous section) can be applied to this compressible flow example (to greatly simplify

matters), the previous discussion of mass and energy across the control volume can be placed in equation

form.  Taking this liberty, the following equation can be formulated between points 0 and 1:

Since friction loss HL  is a function of the well’s internal surface roughness, inside diameter and

the flow’s Reynold’s Number, per the Darcy Weisbach Equation:
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In this equation L  is the distance across the control volume, D is the well screen inside diameter

and f is by definition a friction factor that is a function of the well interior’s surface roughness, the

kinematic viscosity of the air (at the conditions inside the control volume), well diameter, length of

“element”, and the average velocity across that element.  The value of f is typically found by using a

Moody Diagram (it can also be determined through a series of 3 iterative equations).  Substituting, for the

simple element of a screen segment consisting of 1 slot, the equation of state becomes:

Since the previous equation represents the mass and energy balance across but only 1 slot, and

there are many slots in the typical horizontal well, it follows that in order to determine the mass-energy

balance for the entire well, the previous equation will have to be expanded to include all slots to the well’s

end.

By inspection, when one pursues this action, it becomes clear that the left side of the equation will

remain as stated (since the system entrance conditions remain the same regardless of how many slots or

how much of the well is analyzed).  In addition, the terms for the mass leaving Slot #1 and the energy loss

(due to friction) between points 0 and 1 will remain as stated.  What then needs to be added, or more

precisely what needs to be expanded, is the M 1(…) expression.  Recall that the M 1(…) expression

represents the mass and energy of what remains inside the well after Slot #1.  If the entire well is analyzed

to its last (or nth) slot, there will be no mass and hence no associated energy remaining inside the well.  All

mass will have escaped through slots and all energy will have been expended through friction and the

energy of each incremental (but not necessarily equal) mass exiting the well’s slots.  Therefore, the

previous equation expanded to encompass the mass-energy balance of the entire well will become as

follows:
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If this equation is expanded a little further, to provide “quantification” of the Energy i term into its

constituent components, the mass-energy equation for the well becomes:

For this final equation a new term vi is introduced.  This term differs from V i in that vi is, by

definition, the velocity of each incremental mi mass as it leaves each slot.  V i, by comparison, is the

velocity of the remaining gas (e.g., M i) inside the well after Sloti, which is much different in value from vi.

In attempting to solve this equation several issues present themselves:

1. If our well screen was, say 200 ft. long and was fabricated with 4 rows of slots with 25 slots per row

per foot of screen the value of n in the equation would be 20,000 (e.g., 4 x 25 x 200 = 20,000).  There

would have to be 20,000 separate and unique mi, Pi, γγγγi, vi, V i, Z i, and f terms, resulting in the equation

(when expanded to encompass all these terms) being huge by anyone’s standards!

• Each value of mi and vi is unknown since we have yet to develop the equation(s) to calculate the

mass that can be discharged (per slot) into the soil.

• The friction factor f which, in part, is based on the in-well flow velocity and density is different for

each increment (e.g., for each value of i) since both the velocity and density of the in-well gas

changes each time mass exits the well (through any slot).  In fact (and contrary to common belief),

the friction factor increases rather than decreases with distance along the well screen.

• Each Pi and Vi term is different for each value of i and are all unknown at this point.
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• Further, each incremental weight density γγγγi is unknown, since each incremental pressure Pi is

unknown.

• But, if the well screen is perfectly horizontal as installed in the ground each Z i term becomes a

constant.

2. If the distance between slots is uniform the value of L  (in the friction energy expression) becomes a

constant, which aids in solving the equation.

3. If the well’s inside diameter is constant over the length of the screen the value of D (also in the friction

energy expression) becomes a constant as well, thus aiding in our attempts to solve the equation.

4. The total mass input into the system M 0 is unknown but it is known that M 0 must equal the sum of all

mi masses.

5. The inlet velocity of the system V0 is unknown, since it is not known how much mass M 0 enters the

system.  Further, it is known that the in-well velocity at the nth slot (e.g., Vn) must be zero.

6. Finally, the input pressure P0, though not yet quantified can be specified as a specific numeric value.

Where these issues leave us is with the realization that our developed mass-energy balance

equation for a simplified horizontal well model is very complicated.  In this singular equation there are

minimally (and realistically) many thousand variables whose values we yet do not know and which have to

be determined to solve the equation.  Further, several of these variables are “related”, such that some are

functions of others (such as weight density γγγγi is a function of each incremental pressure Pi).  Finally, with

all these difficulties, we still cannot determine the incremental mass discharged from each slot mi, which is

realistically what the goal should be in this exercise (e.g., to determine how much air is injected into the

soil from our well)!  In deriving the mass-energy balance equation for our system the presumption was that

we knew the value of each mi or could “easily” find it.  In fact, we do not know any of the mi values and

don’t even know what the initial M 0 quantity is either!

To determine the value of each mi we would have to derive additional equations that quantify how

much mass can escape from each slot (of a chosen geometrical configuration) taking into consideration that

this mass is resisted from escaping the well due to the inherent resistance of the soil and the static pressure

of groundwater.  Thereafter, if we could determine all the mi values, we could then sum them to determine

M 0.  Thereafter we can verify the initial entrance velocity V0 and determine if the velocity at the final slot

Vn is zero.  We could then check all of the M i values to see if the friction loss along the well screen and

resultant Pi terms match those we used to calculate each mi.  If so, our system is balanced

thermodynamically (e.g., by mass and energy) and in accordance with the Laws of Newtonian Physics, and

we would know exactly how our horizontal well injection system will perform.  If not, then along the way

either analytical errors were made, incorrect simplifying assumptions were applied, and/or too many

assumptions invalid for the conditions at hand were made.  In each of these cases the analysis must begin
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anew as a new iteration and must be carried out to conclusion and repeated as necessary until the system

exactly balances.


